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Results of laboratory experiments are presented in which a finite volume of 
homogeneous fluid was released instantaneously into another fluid of slightly lower 
density. The experiments were performed in a channel of rectangular cross-section, 
and the two fluids used were salt water and fresh water. As previously reported, the 
resulting gravity current, if viscous effects are negligible, passes through two distinct 
phases : an initial adjustment phase, during which the initial conditions are important, 
and an eventual self-similar phase, in which the front speed decreases as t-4 (where 
t is the time measured from release). The experiments reported herein were designed 
to emphasize the inviscid motion. From our observations we argue that the current 
front moves steadily in the first phase, and that the transition to the inviscid 
self-similar phase occurs when a disturbance generated at the endwall (or plane of 
symmetry) overtakes the front. If the initial depth of the heavy fluid is equal to or 
slightly less than the total depth of the fluid in the channel, the disturbance has the 
appearance of an internal hydraulic drop. Otherwise, the disturbance is a long wave 
of depression. Measurements of the duration of the initial phase and of the speed and 
depth of the front during this phase are presented as functions ofthe ratio of the initial 
heavy fluid depth to the total fluid depth. These measurements are compared with 
numerical solutions of the shallow-water equations for a two-layer fluid. 

1. Introduction 
A gravity current (sometimes called a density current or buoyancy current) is 

formed by fluid flowing mainly horizontally under the influence of gravity into 
another fluid of different density. A common procedure for generating gravity 
currents in the laboratory is the sudden removal of a vertical barrier separating two 
fluids of different densities in a channel. Using this technique with salt water and fresh 
water as the two fluids, O’Brien & Cherno (1934), Yih (1947), Keulegan (1957), Barr 
(1967), Simpson & Britter (1979) and Huppert & Simpson (1980) have produced 
gravity currents in channels of rectangular cross-section. I n  most of these experiments 
the volume of one of the fluids was much smaller than that of the other, so the 
experiments approximate the release of a finite volume of fluid into another fluid of 
infinite volume. 

From the results of these experiments and those of our own i t  appears that  the 
gravity current produced by an instantaneous release passes through two distinct 
phases, if viscous effects are negligible. There is an initial adjustment phase, during 
which the initial conditions are important, and an eventual self-similar phase in which 
the front speed decreases as t-4 (where t is the time measured from release). The 
transition from the first to the second phase is observed to be rather abrupt. 
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Theories for gravity current motion resulting from instantaneous releases have 
been proposed by Fay (1969), Fannelop & Waldman (1972), Hoult (1972) and 
Huppert & Simpson (1980). All these theories predict that  the front speed eventually 
will decrease as t-i, based on the assumption that the motion is determined by a 
balance between the inertia and buoyancy of the fluid in the current. This long-time 
behaviour is deduced from a self-similar solution of the shallow-water equations. 
However, only Fannelop & Waldman and Huppert & Simpson have attempted to 
develop theories for the initial phase, and nobody has given a physical reason for the 
observed abruptness of the transition to the second phase. 

Fannelop & Waldman’s theory, which applies only to  releases in deep channels 
(h,/H < l ) ,  predicts that  just after release the front depth and the front speed are 
constant with values tho and (g’h,): respectively, where g’ is the reduced acceleration 
of gravity,? h, is the initial depth of the released fluid, and H is the total depth of 
the fluid in the channel. The theory gives no estimates of the duration of the 
constant-speed phase. 

Huppert & Simpson’s theory, which applies to the whole range 0 < h,/H d 1,  
describes the released fluid as collapsing through a series of equal-area rectangles. This 
theory predicts that  just after release the front speed is approximately constant 
(actually, very slowly decreasing) when 0.075 < h,/H Q 1 and that the flow passes 
directly into the second phase when h,/H Q 0.075. I n  the former case, the initial front 
speed has magnitude i(h,/H)-i (g‘h,)?, and the transition to  the second phase occurs 
when the current depth passes through the value h / H  = 0.075, where h is the 
(constant) depth of the current. 

The aim of the present work is to present detailed observations of instantaneous 
releases for 0 < h,/H d 1, concentrating on the initial adjustment phase and on the 
transition to the self-similar phase. Our experiments were performed in a channel of 
rectangular cross-section, with salt water and fresh water as the two fluids, and were 
designed to  emphasize the inviscid motion. As a framework for discussing the 
experimental results, we also present numerical solutions of the shallow-water 
equations for a two-layer fluid. 

The key features of our observations are that the current front is initially steady 
with constant depth and speed for all values of h,/H in the range 0 < h,/H < 1, and 
the transition to the second phase occurs when a disturbance generated at the end- 
wall (or a plane of symmetry) overtakes the front. For hoiH equal to or slightly less 
than unity the disturbance has the appearance of an internal hydraulic drop and for 
smaller values of h,/H it is a long wave of depression. The measured front speeds were 
generally slower than predicted by the two theories described above. For the initial 
phase of collapse, the description of the flow as collapsing through a series of equal-area 
rectangles appears to be incorrect. 

A qualitative description of our observations is given in $2. Some numerical 
solutions of the shallow-water equations for a two-layer fluid, in which we have 
incorporated a front condition, are described in $3. The experimental and numerical 
results are compared and discussed quantitatively in $4. 

t g’ = (Ip, -p,J/p,)  g,  where g is the acceleration due to gravity, p1 is the density of the fluid in 
the current, and pz that of the surrounding fluid. 
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FIauRE 1. Schematic illustrations of the collapse of a volume of heavy fluid with h,/H Q 1, a t  four 
successive times afer release. (a ) ,  ( b )  and (c) are in the adjustment phase, and ( d )  is a t  the beginning 
of the inviscid self-similar phase. 

2. Experiments 
The apparatus used was a Perspex channel of rectangular cross-section, 348 cm 

long, 50 cm deep and 20.5 cm wide. The channel was filled with tap water to depth h, 
and then a Perspex gate was placed in the channel a t  a distance xo from one of 
the endwalls. A quantity of cooking salt was dissolved into the water behind the 
gate to achieve a desired density, and finally more tap water was added to both 
sides of the gate, if necessary, so that  the total depth of the fluid everywhere in the 
channel was H. The parameter ranges for the density ratio, channel depth, lock 
depth and lock length were 0.95 < p2/p1 < 1.00, 10 cm < H < 50 em, 0 < h,/H < 1 ,  
10 cm < q, < 60 cm. The experimental procedure was to withdraw the gate suddenly 
from the channel. The speed of the current and of the hydraulic drop (if present) were 
measured by recording the times after release a t  which they crossed equally spaced 
marks on the Perspex walls. 

Our purpose in this section is to describe the qualitative results of the experiments. 
The quantitative results are presented and discussed in 94. 

For 0 < h,/H < 0.7, the observed motion after the removal of the gate is shown 
schematically in figure 1 .  Soon after the gate is removed, the fluid from behind the 
gate forms a gravity current that  moves away from the endwall a t  constant speed 
and with constant front depth (figure l a ) .  The acceleration from rest to  constant 
speed happens very rapidly, within a few tenths of a second. The gravity current 
formed in this way has the structure of steady gravity currents as described by 
Simpson & Britter (1979); in particular, intense mixing between the two fluids is 
confined to a region just behind the leading edge of the current, the mixed fluid being 
left behind the head and above the following current. At the same time a long wave 
of depression propagates along the fluid interface towards the endwall. This wave 
is reflected by the endwall (figure 1 b )  and propagates away from the wall with speed 
slightly greater than the speed of the front (figure 1 c ) ,  eventually overtaking the front 
(figure I d ) .  Thereafter, the front speed, which up until this time had remained 
constant, decreases roughly as t-4 until viscous effects become more important than 
inertial effects, causing the front speed to decrease more rapidly. 

Figures 2 (a-c) are photographs, corresponding to figures 1 (a-c), of the release of 
a volume of salt water into fresh water, showing the long wave approaching, being 
reflected from, and propagating away from, the endwall. I n  this experiment 
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FIQURE 3. Schematic illustrations of the collapse of a volume of heavy fluid with h,/H = 1 at 
four successive times after release. (a) ,  ( b )  and (c) are in the adjustment phase, and (d )  is at the 
beginning of the inviscid self-similar phase. 

h,/H = 0.14 and the front speed was observed to remain constant until the front was 
about four lock lengths from the endwall. 

For 0.8 5 h,/H Q 1 ,  the flow is essentially the same as that for smaller values of h,/H 
except that  the backflow towards the endwall forms an internal hydraulic drop (an 
abrupt decrease in the interface level - a type of internal bore) a t  the interface, which 
as h , / H + l  becomes a gravity-current front. It is difficult to determine the exact 
value of h, /H at which the transition from a long wave to an hydraulic drop occurs; 
the best estimate we can give is that  i t  occurs somewhere in the range of 
0.7 < h, /H 5 0.8. When the hydraulic drop or gravity current front encounters the 
endwall, a disturbance that resembles an interfacial hydraulic drop is generated that 
propagates away from the wall with constant speed, eventually overtaking the front. 
The reflected hydraulic drop is difficult to  observe accurately because i t  propagates 
along a mixed layer created by the gravity-current front moving away from the wall. 
Again, after the front has been overtaken, its speed begins to decrease roughly as 
t-4 until viscous effects dominate inertial effects, causing the front speed to  decrease 
more rapidly. 

Figure 3 is a schematic illustration of the flow for h,/H = 1 .  I n  this case the 
displaced upper fluid forms a gravity current that propagates towards the endwall 
(figure 3a,).  When the backflowing current meets the wall a hydraulic drop is 
generated (figure 3 b ) ,  which propagates away from the wall (figure 3 c )  and eventually 
overtakes the front (figure 3 4 .  Figures 4 (a-c) are photographs, corresponding to  
figures 3(a-c) ,  of the release of a volume of salt water into fresh water. I n  this 
experiment the front was observed to be about ten lock lengths from the endwall when 
it was overtaken by the bore. This particular case (h , /H  = 1 )  has been discussed 
briefly by Simpson (1982) .  

In  all the cases discussed above, once the front speed begins to decrease, the gr9vity 
current is well described as collapsing through a series of equal-area rectangles. That 
is, the current depth is roughly uniform along the length of the current, but steadily 
decreases with time. 

3. Analysis 
As a framework for discussing the quantitative results of the experiments, we solve 

an idealized initial-value problem. We consider two-dimensional flow of a two-layer 
fluid bounded a t  top and bottom by rigid horizontal planes and at one end by a 
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-- Y o  - .1 Xf - 
(a ) ( b )  

FIGURE 5 .  Schematic illustration of a constant-volume release in a rectangular 
channel : (a)  before release, ( b )  after release. 

vertical wall. The two fluids are taken to have slightly different densities, to be 
inviscid and incompressible and any mixing between them is neglected. The flow is 
approximated as horizontal and the velocity within each layer as independent of 
vertical position. 

We use a rectangular coordinate system with x-axis along the bottom horizontal 
plane and y-axis along the endwall. The fluid in the lower layer has density p l ,  depth 
h, and horizontal velocity u,, whereas in the upper fluid the same letters are used 
with subscript 2.  Figure 5 is a schematic drawing of the idealized problem under 
consideration. 

3.1. Governing equations 

The shallow-water equations for a two-layer fluid are 

ah, a 
- + - (u, lLl) = 0,  
at ax 

- + -(u,h,) = 0, 
at ax 

ah, a 
(3.2) 

(3.3) 

(3.4) 

wherepo(x, t )  is the pressure a t  the fluid interface. Equations (3.1) and (3.2) represent 
conservation of mass in each layer, and (3.3) and (3.4) represent conservation of 
horizont#al momentum in a hydrostatic pressure field. 

(3.5) 

(3.6) 

Eliminating p o  from (3.3) and (3.4) and using (3.5) and (3.6) to eliminate h, and u2, 
we obtain 

Since 
H = h,(s, t )  + h,(x, t )  

u1 h, +u, h,  = 0. 

and both velocities vanish at s = 0, we deduce from (3.1) and (3.2) that  

uf ah, 
(3.7) g'--(i+a)3- - = o ,  

H 1 ax (1  +m- + 1 - r a p  
at [ H-h,  

where a, = h, / (H-h,)  and r = p2 /p l .  If in addition we invoke the Boussinesq 
approximation (setting r = 1 except where this ratio multiplies g),  (3.7) becomes 
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where 

We use (3.1) and (3.8) to determine hl(x,  t ) ,  u,(x, t )  (then h2(x, t ) ,  u2(x1 t )  are found 
from (3.5) and (3.6)) for the initial conditions 

and the boundary conditions 

%I = 0, ul(z = 0, t )  = 0. 
ax x - 0  

These boundary conditions make x = 0 a plane of symmetry. 
We also impose the front condition 

(3.9) 

(3.10) 

(3.1 1)  

where u,(t) is the front speed, h,(t) is the front depth and p is a dimensionless constant. 
A front condition is required in our statement of the problem because near the front, 
where viscous dissipation and vertical accelerations are important, the shallow-water 
equations are invalid. Essentially, our use of (3.11) means that we are treating the 
current front similarly to hydraulic jumps in shallow-water flow. With p2 = 2,  (3.11) 
gives the theoretical front speed derived by Benjamin (1968), based on the bulk 
conservation of mass and momentum, for the steady propagation of an infinitely long 
cavity in a rectangular tube. We have left /3 to be determined by experiments, but 
expect it to be of order one. 

I n  the limit h,/H+O, (3.1) and (3.8) reduce to the familiar one-layer shallow-water 
equations and (3.11) becomes 

uf = /32q'h,. (3.12) 

Fannelop & Waldman (1972) and Hoult (1972) found that for constant-volume 
currents this reduced set of equations has a self-similar solution given by 

(3.13) 

ul(z, t )  = Zat-47, (3.14) 

where 
X 

(3.15) 

and xf = at! is the front position. Comparing these results with experiments, Fannelop 
& Waldman and Hoult determined that p2 1 .O and 1.4 respectively.? For long time, 
but not so long that viscous effects become more important Lhan inertial effects, we 
expect the solutions of our initial-value problem to approach this self-similar solution. 
Indeed, we have already noted in $ 2  that the observed front speed (that is, dx,/dt) 
eventually decreases a t  t-i. Our main interest is in how this limiting form is 
approached. 

7 Note tha t  Fannelop & Waldman (1972) consider pz t o  be a function of time, with /I2 = 4 for 
early time and pz = 1 for late time. However, they had no experimental observations supporting 
their early-time theory. 
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FIGURE 6. The characteristic diagram for the case with ho/H = 0 and p2 = 2. The labelled regions 
in the diagram are: ( A )  region of constant state adjoining the endwall at s = 0;  ( B )  centred 
simple-wave region; (C)  region of constant state at front of current; ( D )  complex wave region 
adjoining the wall; ( E )  simple-wave region; ( F )  complex wave region at current front. 
to = s o / ( g ’ h 0 ) ~  is a timescale. 

3.2. Method of solution 

We used the method of characteristics to solve the initial-value problem formulated 
in $3.1. As described (for example) in Ames (1965, pp. 416422), the solution of the 
partial differential equations (3.1) and (3.8) is equivalent to the solution of the 
ordinary differential equations 

du 
h,’ -(1-22a)u1+A+ - = 0, 

dhl 

along the characteristic directions specified by 

where 
A, = ul( 1 -a) f [u; a2+g’h1( 1 4)$. 

(3.16) 

(3.17) 

(3.18) 

The numerical algorithm we used to  solve (3.16) and (3.17) is outlined in Ames (1965, 
pp. 435-437). The method of characteristics is particularly convenient for this 
problem because the position of the front, where (3.11) is applied, is computed 
explicitly . 

The characteristic diagram for the case with h,/H = 0 and p2 = 2 is shown in figure 
6. This diagram is typical of the characteristic diagrams for other values of h,/H and 
p. The diagram shows that initially the flow consists of a centred simple expansion 
wave that connects a region of constant state a t  the front of the current to  another 
region of conaant state adjoining the endwall a t  x = 0 (using the terminology of 
hyperbolic waves). This description of the initial motion for h,/H = 0 has also been 
given by Abbott (1961) and Fannelop & Waldman (1972). The diagram also shows 
the reflection of the centred expansion wave from the endwall. As soon as the first 
characteristic of the reflected wave intersects the curve representing the front 
position, which up to this point is a straight line, the front curve begins to bend 
towards the time axis, indicating that the front speed is decreasing. 
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Solutions for the current profile h, for several times after release are shown in figures 
7 (a-c), for h,/H = 0, $ and 1 respectively, again with p2 = 2. Also shown (as dashed 
lines) in the first two of these figures are the profiles given by (3.13) ; these self-similar 
solutions, which have only been drawn for times after the computed front speed begins 
to decrease, are plotted with shifted time origins so that their horizontal length equals 
that of the numerically computed profiles. It can be seen that the computed solutions 
have the essential features of the flow, as described in 92, and as shown in figures 
1 4 .  For small h,/H the computed simple wave, as i t  approaches the endwall, has 
an interface slope that decreases with time and which generates a weak wave when 
it is reflected by the endwall. As h,/H-t+, the computed simple wave has a very steep 
interface slope that does not decrease with time and that generates a stronger wave 
when it interacts with the endwall. For h,/H > $, the computed profiles are 
multivalued functions of position, as shown in figure 7 ( c ) .  The range of h,/H for which 
this occurs is independent of /3. Clearly, the multivalued solutions are unphysical and 
suggest that for h,/H > .$ the backflowing simple wave should be replaced in the 
analysis by an interfacial hydraulic drop. 

Physically, the backflowing simple wave is stronger for larger values of h,/H 
because the fluid in the upper layer must travel a t  greater speed the shallower the 
upper-layer depth is in relation to  the lower-layer depth. The model calculations 
indicate that this trend results in the formation of an interfacial hydraulic drop for 
h,/H > 4, whereas in our experiments we observe no indication of a hydraulic drop 
until h,/H > 0.7. There are several possible reasons for this discrepancy, but the most 
likely are mixing between the two fluids and the smooth velocity profile in the 
experiments (as opposed to the discontinuous profile in the model). 

We attempted to use the approximate theory of Yih & Guha (1955) to  incorporate 
a hydraulic drop into our calculations. Our idea was to  determine the speed and 
strength of the hydraulic drop that matched up with the speed and depth of the 
current front that satisfied (3.11), and then compute the speed and depth of the 
reflected hydraulic drop. The front speed would begin to decrease when the reflected 
hydraulic drop overtook the front. However, because our results are not entirely 
satisfactory, we choose not to present them. The theory of jumps and drops in two-layer 
fluids is not well developed. A more complete study of our problems will have to  await 
further developments in this theory. 

4. Results and discussion 
Figure 8 is a plot of the front position and the bore position, for the case h,/H = 1, 

as functions of time after release. Most of the data in this plot are from our 
experiments, but we have also included one set of results each from Keulegan (1957) 
and Huppert & Simpson (1980).t The solid lines in the plot are straight-line fits to 
the data a t  early time. It is quite clear that  both the front and the bore travel a t  
constant speed initially and that the front speed begins to decrease a t  the point where 
the two lines intersect. The constant speeds of the front and the bore were estimated 
as the slopes of these lines. 

Similar plots were made for other values of h,/H, and the front speeds estimated 
from these plots are shown in figure 9. The front speed scaled by (g’h,): is seen to 
decrease (almost linearly with h, /H) from about 0.7 for h,/H = 0 to about 0.5 for 

t Huppert dz Simpson (1980) gave no results for the bore position. Although Keulegan (1957) 
does not mention the bore, it appears in his plots of the gravity-current profile; we obtained the 
data for the bore position shown in figure 8 from these profile plots. 
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FIGURE 8. The front position and bore position as functions of time after release with h,/H = 1 : 
-. straight-line fits to the data at early time; 0, ha = 10 cm, zo = 40 em, g' = 9.8 cm/sz: A, 
10 em, 60 em, 9.8 cm/s2; V, 10 em, 50 em, 19.6 cm/s2; 0 ,  20 cm, 40 cm, 39.2 cm/s2; 0, 15 cm, 
30 cm, 39.2 cm/sz; 0, 29.8 cm, 20.2 cm, 11.2 cm/sz (Huppert t Simpson); 0, h, = 26 cm, 
za = 188 em, g' = 19.6 cm/sz (Keulegan 1957). 

o.2 t 
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0 0.2 0.4 0.6 0.8 1 .o 
h,lH 

FIGURE 9. The front speed uf during the initial phase of collapse plotted as a function of 
h o / H :  ., experiments; ----, theory with /3 = 1.0. 

h,/H = 1. Also shown in this plot is a curve representing the constant front speeds 
computed as described in Q 3, with p" = 1. As discussed before, the theory is only valid 
for 0 < h,/H < &, and in this range the agreement is excellent. Contrary to the theory 
of Fannelop & Waldman (1972), we found that p2 = 1 gave the best agreement with 
the experimental results for both early and late time. 

The measured gravity-current front depths during the initial stage of collapse are 
shown in figure 10 for various values of h,/H. As described by Britkr & Simpson 
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FIQURE 11. The length s, of the gravity current when its front speed begins to decrease : , 
experiments; ---- , theory with /3* = 1.0. 

(1978), gravity currents in miscible fluids consist of a lower layer of unmixed heavy 
fluid overlaid by a layer of mixed lighter fluid. They denote the depth of the mixed 
layer as h, and that of the unmixed layer as h,. We have plotted h, and h, + h, in the 
figure. Also plotted is a curve representing the computed front depth. In  the rangc 
0 < h,/H < $, the computed depths are about halfway between the two measured 
depths, as expected since the model assumes there is no mixing and the total mass 
of the released fluid is conserved. 

The length xs of the gravity current when the front speed begins to decrease is 
plotted in figure 1 1  as a function of h, /H.  These points are not direct measurements 
but estimates from plots of the measured front positions versus time. The length .r,/.r, 
is seen to increase (almost linearly with h , / H )  from about 3 for h,/H = 0 to about 10 
for h,/H = 1. Also shown in this plot is a curve representing the computed horizontal 
position (with p2 = 1 )  where the reflected wave overtakes the current front, in the 
range 0 < h o / H  6 t. The computed results are in fair agreement with the data;  w e  
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1 10 1 00 1000 

t o  

FIGITRE 12. The front, position as afunction oftime for different releases with h,/H = 1 : 0, x / x o  = 6;  
+, 10; A, 12; V, 18; a, 25. The initial adjustment phase is represented by the line with slope 1 ,  
the inviscid self-similar phase by the line with slope $ and the viscous self-similar phase by slope {. 

I - 

expect the computed results to be short of the experimental estimates because the 
laboratory current must travel a short distance before we can detect that  its front 
speed is decreasing. 

All the results we have presented so far are dependent upon inertial effects being 
more significant than viscous effects. Viscous effects may become more important 
beginning in either the first or second phase of collapse. Huppert (1982) estimates 
that a gravity current moving along a rigid boundary will have length of the order 
of 

(4.1) x* = (xi hi g ’ / v z ) + ,  

when viscous effects begin to dominate inertial effects, where v is t,he kinematic 
viscosity of the fluid in the current. Assuming a balance between buoyancy and 
viscous forces in the current, Huppert, following Barenblatt (1952), derives a 
self-similar solution of the lubrication equations that gives the front speed decreasing 
as t-6. Figure 12 is a plot of the measured front positions as a function of time for 
several lock-release experiments with h,/H = 1 but with different values of x*/x,. 
Both scales in the plot are logarithmic, so the inviscid initial adjustment phase is 
represented by a straight line with slope 1, the inviscid self-similar phase by a straight 
line with slope 8, and the viscous self-similar phase by straight lines with slope I.? 
The plot, shows that, the measured points follow the inviscid theory until xf x x*, and 
then they approach the predicted viscous behaviour. Similar results were obtained 
for other values of h,/H. Therefore to ensure that both inviscid phases are obtained 
in the experiments, initial conditions must be chosen such that z* 9 xS. 

t Simpson (1982, 1). 220) mistakenly described the length of the current as increasing as Z in 
the viscous self-simil~r phase. The experimental results of Barr (1967), when made non-dimensional 
and replotted, agree with the description we have given here. 
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5. Concluding remarks 
We have presented experimental results for the release of a heavy fluid in a 

rectangular channel and ha,ve given an interpretation of these results in terms of 
shallow-water theory for a two-layer fluid. Our interpretation gives a qualitative 
understanding of the results for 0 < h,/H < 1 ,  but is quantitatively accurate only 
for 0 < h 0 / H  < 2. 

Although we have restricted our attention to the release of heavy fluids in 
rectangular channels, the qualitative aspects of our interpretation of these results 
apply in many different situations. For example, a volume of air collapsing into water 
in a closed horizontal tube of rectangular cross-section forms a steady air cavity front 
that travels along the top of the tube. The cavity front speed remains constant until 
it is overtaken by a hydraulic jump that was generated a t  the tube end. We have 
performed experiments with h,/H = 1 and found that the cavity is about 82, long 
hefore its front speed begins to decrease. Using Benjamin’s (1968) steady-cavity 
theory, with corrections for surface tension suggested by Wilkinson (1982), and the 
standard theory of hydraulic jumps, we obtain a theoretical length of 8.32,. 

An axisymmetric flow resulting from the release of a cylindrically shaped volume 
of heavy fluid also passes through two phases. We have performed experiments 
simulating tjhis type of flow by releasing heavy fluid in a sector tank. I n  the initial 
phase, the front speed is nearly constant and in the second phase the front speed 
decreases as t-a, as expected from self-similar solutions of the axisymmetric shallow - 
water equations. 
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